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Abstract

The onset of convective instability in a fluid-saturated porous layer between the two horizontal plates heated iso-

thermally from below has been analyzed theoretically by using propagation theory. In the analysis the thermal dis-

persion coefficient is assumed to be proportional to the streamwise velocity. The results show that both inertia and

thermal dispersion stabilize the system. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The system considered here is a fluid-saturated po-

rous layer with the fully-developed laminar flow of uni-

form superficial velocityU0. In the fluid-saturated porous

layer confined between the two horizontal plates of depth

H, the temperature is uniform at Ti for the streamwise
distance X 6 0 and for X > 0 there is a step change in the

bottom temperature to a higher value Tw. The thermal
boundary-layer thickness DT increases with increasing X.

Under this condition the primary flow of steady, laminar

forced convection prevails and for a high Tw the sec-

ondary motion of vortex rolls caused by buoyancy forces

will set in at a certain streamwise position Xc.
In the present system the important parameters are

the particle Reynolds number Red, the effective Prandtl
number Pr, the P�eeclet numbers Pe, and the local Nusselt
number NuX , the Darcy number Da, the Rayleigh num-
ber Ra, and the Darcy–Rayleigh number RaD defined

as

Red ¼ U0d=m; Pr ¼ m=ae;
Ped ¼ U0d=ae; PeH ¼ U0H=ae;
PeX ¼ U0X=ae; NuX ¼ qwX=ðkeDT Þ;
Da ¼ K=H 2; Ra ¼ gbDTH 3=ðaemÞ;
RaD ¼ DaRa;

ð1a–1iÞ

where DT ¼ Tw � Ti. Here qw denotes the heat flux at the
bottom boundary, ae the effective thermal diffusivity, m
the kinematic viscosity of fluid, ke the effective thermal
conductivity, K the permeability, g the gravitational

acceleration, and b the thermal expansivity.

Under the Darcy model Prats [1] analyzed the onset

of mixed convection in the above system and reported

that the buoyancy-driven convection sets in when RaD
exceeds the value of 4p2. This critical value is the same as
that to represent the onset of Horton–Rogers–Lapwood

convection in an initially, quiescent fluid layer heated

very slowly from below. For RaD � 4p2, it becomes an
important problem to predict the critical streamwise

position wherefrom mixed convection starts. This sta-

bility problem will be analyzed by using propagation

theory and the effect of thermal dispersion on stability

will be examined in detail.

2. Basic state of primary forced convection

Fand et al. [2] and Seguin et al. [3] reported that

Darcy’s law is valid for the particle Reynolds number
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Red6 2:3, Forchheimer’s equation is valid for

56Red6 80, and fully developed turbulent flow exists

when Red > 120–180. In the present study it is assumed

that the superficial velocity U0 is constant and under

local thermal equilibrium between solid particles and

fluid the effect of thermal dispersion on heat transfer is

critical. Also, constant thermal dispersion and no effects

of wall and tortuosity are assumed. A wide range of

parameters affecting flow and heat transfer are seen in

the work of Muralidhar and Suzuki [4]. It is expected

that wall effects are confined in a layer of H
ffiffiffiffiffiffi
Da

p
and

therefore Da should be very small in the present system.

Under the above assumption the volume averaged,

basic temperature T0 is represented by

U0

oT0
oX

¼ ae
o

oZ
ð1

�
þ cÞ oT0

oZ

�
for Red6 80; ð2Þ

where c is the ratio of the thermal dispersion coefficient
ð¼ caeÞ to the effective diffusivity ae and Z denotes the

vertical distance. According to the work of Plumb [5] we

set c ¼ APed, where A is an empirical coefficient. The

solution of Eq. (2) is obtained analytically for the pre-

sent system of isothermal heating:

h0 ¼
X1
n¼0

erf
nþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cÞx

p
("

� f

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
)

� erf
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ cÞx
p

(
þ f

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
)#

: ð3Þ

This equation yields the local Nusselt number NuX as

NuX ¼ 0:564ð1þ cÞ1=2Pe1=2X for dT < 1; ð4Þ

where h0 ¼ ðT0 � TiÞ=DT , f ¼ z=
ffiffiffi
x

p
and ðx; zÞ ¼ ðX=PeH;

ZÞ=H . Here dTð¼ DT=HÞ denotes the conventional di-
mensionless thermal boundary-layer thickness at which

h0 ¼ 0:01: dT ¼ 3:64ð1þ cÞ1=2x1=2 for dT < 1.

For the present heat transfer system of Red6 80,

Renken and Poulikakos [6] conducted water experiment

with glass spheres of diameter d ¼ 3 mm (Da ¼ 1:16	
10�6) and H ¼ 7:65 cm. All of their experimental NuX -
values were fitted to Eq. (3). The A-value in c is found to
be 5:8	 10�3 for Red ¼ 1:9–57:2 and with this A-value

the basic temperature profile from Eq. (3) agrees rea-

sonably well with their experimental range of PeX < 104,

where the relation of dT / x1=2 is valid. Fitting of one set
of data (Red ¼ 56:6) at PeX ¼ 1:29	 105 produces

A ¼ 5:0	 10�2. With this A-value, Eq. (3) agrees well

with experimental data for 0:126 z6 1 but its deviation

is large near the bounding surface. It seems that for

PeX > 104 the A-value changes significantly from the

surface to the bulk. But NuX follows Eq. (4) with

A ¼ 5:8	 10�3. Even though nonuniformities in poros-

ity e and permeability K exist near the surfaces, a proper

choice of c produces the local temperature profile to

represent the actual one to a certain degree. Therefore

Eq. (3) is used in the following stability analysis.

3. Propagation theory

Under the linear stability theory the variables are

decomposed into the unperturbed quantities and their

perturbed ones at the onset position of mixed convec-

tion. For this purpose it is assumed that the incipient

disturbances will exhibit characteristics of regular lon-

gitudinal vortex rolls in the Forchheimer flow. Then the

dimensionless disturbance equations are obtained under

the Boussinesq approximation as

ov
oy

þ ow
oz

¼ 0; ð5Þ

1

Da
1



þ Re�1K
�
m ¼ � op

oy
; ð6Þ

1

Da
1



þ Re�1K
�
w ¼ � op

oz
þ h; ð7Þ

oh
ox

þ Ra
ReK

� 
w
oh0
oz

¼ ð1þ cÞ o2h
oy2

�
þ o2h

oz2


; ð8Þ

with the boundary conditions,

w ¼ h ¼ 0 at z ¼ 0 and z ¼ 1; ð9Þ

where

ðu; v;wÞ ¼ ðU1=PeH; V1;W1ÞReKH=ae;

y ¼ Y =H and p ¼ P1H 2=ðqaemÞ:

Here q is the fluid density and W represents the vertical

velocity. The subscript 0 denotes the unperturbed

quantity, U1, V1 and W1 are the perturbed velocity

components in the Cartesian coordinates and P1 is the
perturbed pressure. The modified Reynolds number

ReKð¼ CU0

ffiffiffiffi
K

p
=mÞ represents the inertia effect, where C

is the inertia coefficient. It should be noted that the

temperature disturbance has been nondimensionalized

by aem=ðgbH 3Þ rather than DT . The boundary conditions
represent slip on the boundaries and the fixed tempera-

tures on the upper and lower boundaries. The axial heat

conduction has been neglected like Eq. (2). Now, we

employ the following scaling relation at x ¼ xc, based on
Eq. (8):

RaDT

ReKð1þ cÞ

� 
w
h
� d2T for dT < 1; ð10Þ

where RaDT is the Rayleigh number having the length

DT. The order of magnitude of DT=ðDTðoT0=oZÞÞ is

equivalent to that of RaDT
=ðReKð1þ cÞÞ since the basic

temperature profile and its perturbation have been non-

dimensionalized with different scales.
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For DT � H , RaDT is assumed to reach a constant at

the critical position Xc [7,8], which leads to jw=hj � d2T
from Eq. (10). With this scaling relation the perturbed

quantities in the form of time-independent, longitudinal

vortex rolls are expressed under the normal mode

analysis as

vðx; y; zÞ
wðx; y; zÞ
pðx; y; zÞ
hðx; y; zÞ

2
664

3
775 ¼

ðx1=2=aÞ v�ðfÞ
x w�ðfÞ

x1=2 p�ðfÞ
h�ðfÞ

2
664

3
775 expðiayÞ

with dT / x1=2;

ð11a–dÞ

where i is the imaginary number and a is the wave-

number. The above longitudinal vortex-roll type of flow

was observed experimentally for PeH > 0:75 by Com-

barnous and Bia [9]. Eqs. (11a–d) are substituted into

Eqs. (5)–(8). The resulting equations are functions of f
only, since Eq. (3) reduces to h0 ¼ erfc½f=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ cÞ

p
� for

small x. Eliminating v� and p� yields the new, self-similar
amplitude function:

ð1
�

þ cÞðD2 � a�2Þ D2

�
þ f
2ð1þ cÞD� a�2

�

þ Ra�D
ð1þ ReKÞ

a�2Dh0

�
w� ¼ 0 ð12Þ

with the usual boundary conditions of no penetration

and isothermal heating,

w� ¼ ðD2 � a�2Þw� ¼ 0 at f ¼ 0 and f ¼ 1=x1=2;

ð13Þ

where a� ¼ x1=2a, Ra�D ¼ x1=2RaD and D ¼ d=df. For

x � 1, the upper boundary approaches the infinity, i.e.

f ! 1. Now, Ra�D and a� are assumed to be the eigen-
values.

The above equations are solved numerically by em-

ploying the outward shooting scheme. For a given c, a�

and ReK the minimum value of Ra�D should be found. In

other words, the minimum value of x, i.e. xc is found for
a given RaD, ReK and c and the corresponding wave-

number is the critical one ac.

4. Results and conclusion

The critical conditions to mark the onset of regular

longitudinal vortex rolls (see Eqs. (11a–d)) have been

obtained by using the propagation theory illustrated

above. In the deep-pool systems of small xc the critical
values are found to be

xc ¼
Xc

HPeH
¼ 169ð1þ cÞ 1þ ReK

RaD

� 2

; ð14aÞ

ac ¼ 0:90=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcð1þ cÞ

p
; ð14bÞ

which are valid for dT < 1, i.e. xc < 0:07=ð1þ cÞ, and
dT / x1=2. As expected, xc increases with increasing c and
ReK but it decreases with increasing RaD. The present
system may be said to be stable for X < Xc but it is
unstable for X PXc. The above time-independent, con-
vective instabilities characterized by the present stability

criteria represent a fastest growing mode of disturbances

for PeH > 0:75, as mentioned before. For PeH < 0:75 the
time-dependent transverse vortex rolls similar to

Tollmien–Schlichting waves will appear with very small

U0 [9].

Now, the stability analysis is extended to the region

of dT � 1 by fixing x locally but varying f in Eqs. (3),

(11a–d) and (13). Then Eq. (12) can still be kept. It is

very interesting that with c ¼ ReK ¼ 0 the results for

large xc approach the well-known critical values of

RaD;c ¼ 4p2 and ac ¼ p. The resulting overall stability

criteria are shown in Fig. 1. For the case of xc ! 1, i.e.

a constant adverse temperature gradient, the term in-

volving f in Eq. (12) disappears and the resulting sta-

bility criteria are found to be

RaD;c ¼ 4p2ð1þ cÞð1þ ReKÞ with ac ¼ p ð15Þ

which constitutes the minimum bound.

Considering the available experimental data [2,3,6,9],

the present predictions would be valid for PeH > 0:75
and Red6 80 in the system of c � constant and also for

PeX < 104 in the thermally developing region. With in-

creasing c and ReK, the present system becomes more

stable. It is interesting that the present stability criteria

cover the whole domain of RaD P 4p2.

Fig. 1. Prediction of critical position xc to mark onset of lon-

gitudinal vortex rolls.
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